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Abstract. We consider the problem of Arnold Diffusion for nearly inte-
grable partially isochronous Hamiltonian systems with three time scales.
By means of a careful shadowing analysis, based on a variational tech-
nique, we prove that, along special directions, Arnold diffusion takes
place with fast (polynomial) speed, even though the “splitting determi-
nant” is exponentially small.

1. Introduction. In a previous paper [6] (see also [7]) we introduced, in the con-
text of nearly integrable Hamiltonian systems, a functional analysis approach to the
“splitting of separatrices” and to the “shadowing problem”. We applied our method
to the problem of Arnold Diffusion, i.e. topological instability of action variables,
for nearly integrable partially isochronous systems. The aim of this paper is to
improve the shadowing theorem of [6] and to apply this new theorem to the system
with three time scales (1.1) below , in order to prove that along special directions
Arnold diffusion takes place with “very fast speed”, namely a speed polynomial in
ε. To that effect, we use the results on the splitting provided in [6].

Hamiltonian systems with three time scales have been introduced in [11] as a
description of the D’Alembert problem in Celestial Mechanics. Later on systems
with three time scales have been reconsidered for example in [16], [17], [22], [10],
[6], [19].

In this paper we focus on isochronous systems with three time scales defined by
Hamiltonian

Hµ =
1√
ε
I1 + εaβ · I2 +

p2

2
+ (cos q − 1)(1 + µf(ϕ)), (1.1)
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where (ϕ1, ϕ2, q) ∈ T1×Tn−1×T1 are the angle variables (T = R/2πZ), (I1, I2, p) ∈
R1 × Rn−1 × R1 are the action variables, β = (β2, . . . , βn) ∈ Rn−1, n ≥ 3,
a > 0 and ε > 0, µ ≥ 0 are small real parameters. We will assume that µ =
O(min{ε3/2, ε2a+1}). Hamiltonian Hµ describes a system of n isochronous har-
monic oscillators whose frequency vector ωε = (1/

√
ε, εaβ) has one fast frequency

ωε,1 = 1/
√

ε and (n − 1) slow frequencies ωε,2 = εaβ, weakly coupled with a pen-
dulum.

When µ = 0 the energy ωε,iIi of each oscillator is a constant of the motion.
The problem of Arnold diffusion in this context is whether, for µ �= 0, there exist
motions whose net effect is to transfer O(1)-energy from one oscillator to others in
a certain time Td called the diffusion time. It will be required that ωε satisfies some
diophantine condition.

The existence of Arnold diffusion is usually proved following the mechanism pro-
posed in [3]. For µ = 0 Hamiltonian Hµ admits a continuous family of n-dimensional
partially hyperbolic invariant tori TI0 = {(ϕ, I, q, p) ∈ Tn × Rn × T1 × R1 | I =
I0, q = 0, p = 0} possessing stable and unstable manifolds W s(TI0) = Wu(TI0) =
{(ϕ, I, q, p) ∈ Tn×Rn×T1×R1 | I = I0, p2/2+(cos q−1) = 0} called “whiskers” by
Arnold. For µ small enough the perturbed stable and unstable manifolds W s

µ(T µ
I0

)
and Wu

µ (T µ
I0

) may split and intersect transversally, giving rise to a chain of tori con-
nected by heteroclinic orbits. By a shadowing type argument one can then prove
the existence of an orbit such that the action variables I undergo a O(1)-variation
in a certain time Td called the diffusion time. In order to prove the existence
of diffusion orbits following the previous mechanism one encounters two different
problems: 1) Splitting of the whiskers; 2) Shadowing problem.

The “splitting of the whiskers” for Hamiltonian Hµ, when µ = O(εp), p > 0 and
ε → 0, has been studied in [16], [19], [22] and [6]. In [16]-[19] and [22] the size of
the splitting is measured by the “determinant of the splitting matrix” which turns
out to be exponentially small, precisely O(exp(−(π/2)ε−1/2)ε−p) for some p. We
underline that papers [16]-[19] deal also with non-isochronous systems and more
general perturbation terms (but two rotators only).

In [6], the splitting of the stable and unstable manifolds is related to the vari-
ations of the “homoclinic function” Gµ : Tn → R (defined in (2.5)), which is the
difference between the generating functions of the stable and unstable manifolds at
section {q = π}. ∇Gµ(A) provides a measure of the distance between the stable and
unstable manifolds, so that a critical point A of Gµ gives rise to a homoclinic inter-
section. Usually det D2Gµ(A) is called the “splitting determinant”. The use of the
“homoclinic function” Gµ for measuring the splitting has two advantages. Firstly,
it is very well suited to deal with the shadowing problem by means of variational
techniques because Gµ is nothing but the difference of the values of the Lagrangian
action functional associated to the quasi-periodically forced pendulum (2.2) at two
solutions, lying respectively on the stable and unstable manifolds W s,u

µ (TI0), see
(2.4). Secondly it may shed light on a “non uniform” splitting which would not be
given by the splitting determinant, when the variations of Gµ in different directions
are of different orders. With this regard we quote paper [20] where, for a general
nearly integrable Hamiltonian system, detailed estimates for the “eigenvalues and
the eigenspaces of the splitting matrix”, rather than for the determinant, are given.

For the system with three time scales associated to Hamiltonian Hµ, “non uni-
form” splitting is suggested by the behaviour of the first order expansion of Gµ in µ,
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called the Poincaré-Melnikov approximation. In fact the first order term, which is
given by the Poincaré-Melnikov primitive defined in (2.8), has exponentially small
oscillations in the fast angle A1, and polynomially small ones in the slow angles A2.
Naively this gives the hint that the splitting might be exponentially small in the
direction I1 and just polynomially small in the directions I2.

However, in general, for µ = O(εp) and ε → 0 the homoclinic function Gµ is not
well approximated by the Poincaré-Melnikov primitive. In [16]-[19] the asymptotic
validity of Melnikov’s integrals for computing the exponentially small “splitting
determinant” is proved to hold thanks to cancellations techniques.

In [6] the naive Poincaré-Melnikov approximation for Hamiltonian Hµ has been
rigourously justified for µε−3/2 sufficiently small, in a different way. We define
another “splitting function” G̃µ, see (2.7), whose critical points as well give rise to
homoclinic intersections. G̃µ is well approximated, for µ = O(εp) and ε → 0, by
the Poincaré-Melnikov primitive and has exponentially small oscillations in A1, see
theorem 2.2. The crucial observation is that Gµ and G̃µ are the same function up
to a diffeomorphism ψµ of the torus close to identity, namely G̃µ = Gµ ◦ ψµ, see
theorem 2.1.

After the works [8], [9], [21], [12], [10], [6], [13], [14] and references therein, it is
a well established fact that the diffusion time is estimated by a polynomial inverse
power of the splitting. For instance, using the estimate on the size of the splitting of
[16] and [19] an exponentially long diffusion time has been obtained in [10], namely
Td = O(exp(C/εb)) for some b > 0 (see also theorem 5.2 of [6]).

However the properties of Gµ (oscillations of different amplitude orders accord-
ing to the direction) suggest that Arnold diffusion can take place with different
speed along different directions; since, for larger splitting one would expect a faster
speed of diffusion, one could guess the existence of diffusion orbits that drift along
the “fast” directions I2 ∈ Rn−1, where the splitting is just polynomially small w.r.t.
1/ε, in a polynomially long diffusion time Td = O(1/εq); see also the discussion in
chapter 2 of [20]. The aim of this paper is to prove that this is indeed the case
and to provide explicit and careful estimates on the diffusion time. In order to
prove this phenomenon (see theorem 4.1 for the general case and theorem 4.2 for an
application) we refine the shadowing theorem 2.3 of [6] for dealing with the present
“non-uniform” splitting. Note that, because of the preservation of the energy along
the orbits, Arnold diffusion can take place in the direction I2 for n ≥ 3 only.

In order to justify heuristically our result we recall how the diffusion time Td is
estimated in [6], once it is verified that stable and unstable manifolds split. Td is,
roughly, estimated by the product of the number of heteroclinic transitions k (=
number of tori forming the transition chain = heteroclinic jump/splitting) and of
the time Ts required for a single transition, namely Td = kTs. The time for a single
transition Ts is bounded by the maximum time between the “ergodization time”
Te of the torus Tn run by the linear flow ωεt, and the time needed to “shadow” ho-
moclinic orbits for the corresponding quasi-periodically forced pendulum (equation
2.2).

The reasons for which we are able to move in polynomial time w.r.t 1/ε along
the fast I2 directions are the following three ones. (i) As in [6], since the homo-
clinic orbit decays exponentially fast to 0, the time needed to “shadow” homoclinic
orbits for the quasi-periodically forced pendulum (2.2) is only polynomial. (ii)
Since the splitting is polynomially small in the directions I2, we can choose just
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a polynomially large number of tori forming the transition chain k = O(1/εp) to
get a O(1)-drift of I2. (iii) Finally, the most difficult task is getting a polyno-
mial estimate for the “ergodization time” Te -defined as the time needed for the
flow {ωεt} to make an α-net of the torus- with α appropriately small. By a result
of [4] this time satisfies Te = O(1/ατ ). Let us explain how this estimate enters
into play. In order to apply our “gluing” variational technique, the projection of
our shadowing orbit on the torus Tn, namely {ωεt + A0}, must approach, at each
transition, sufficiently close to the homoclinic critical point A of Gµ. The crucial
improvement of the shadowing theorem 4.1 allows the shadowing orbit to approach
A only up to a polynomially small distance α = O(εp), p > 0, (and not exponen-
tially small as it would be required when applying the shadowing theorem of [6]).
By the forementioned estimate on the ergodization time Te = O(1/ατ ) it results
that the minimum time after which the homoclinic trajectory can “jump” to an-
other torus is only polynomially long w.r.t 1/ε. Actually this allows to improve as
well the exponential estimate on the diffusion time required to move also in the I1

direction, see remark 4.3.
Theorems 4.1 and 4.2 are the first steps to prove the existence of this phenome-
non also for more general systems (with non isochronous terms and more general
perturbations). We quote [20], where the splitting problem is studied in a quite
general framework.

The paper is organized as follows: in section 2 we recall some preliminary results
taken from [6]. In section 3 we introduce the general “splitting condition” which
will be used in section 4 to prove the shadowing theorems.

2. Preliminaries. In this section we recall the results of [6] that will be used
in the sequel. We refer to [6] for complete details and for the description of the
general functional analysis approach based on a Lyapunov-Schmidt reduction. With
respect to the notations of [6] we remark that we have changed the sign before the
perturbation f in Hamiltonian Hµ.

The equations of motion corresponding to Hamiltonian Hµ are

ϕ̇ = ωε, İ = −µ(cos q − 1) ∂ϕf(ϕ), q̇ = p, ṗ = sin q (1 + µ f(ϕ)). (2.1)

The angles ϕ evolve as ϕ(t) = ωεt + A; therefore equations (2.1) can be reduced to
the quasi-periodically forced pendulum equation

−q̈ + sin q (1 + µf(ωεt + A)) = 0, (2.2)

corresponding to the Lagrangian

Lµ,A(q, q̇, t) =
q̇2

2
+ (1 − cos q)(1 + µf(ωεt + A)). (2.3)

For each solution q(t) of (2.2) one recovers the dynamics of the actions I(t) by
quadratures in (2.1).

For µ = 0 equation (2.2) possesses the one parameter family of homoclinic so-
lutions to 0, mod 2π, qθ(t) = 4 arctan(exp (t − θ)), θ ∈ R. Using the Implicit
Function Theorem one can prove (lemma 2.1 of [6]) that there exist, near the un-
perturbed homoclinic solutions qθ(t), for 0 < µ < µ0 small enough independently of
ωε, “pseudo-homoclinic solutions” qµ

A,θ(t) of equation (2.2). These are true solutions
of (2.2) in each interval (−∞, θ) and (θ,+∞); at time t = θ such pseudo-solutions
are glued with continuity at value qµ

A,θ(θ) = π and for t → ±∞ are asymptotic to
the equilibrium 0 mod 2π. We can then define the function Fµ : Tn×R → R as the
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action functional of Lagrangian (2.3) evaluated on the “1-bump pseudo-homoclinic
solutions” qµ

A,θ(t), namely

Fµ(A, θ) =
∫ θ

−∞
Lµ,A(qµ

A,θ(t), q̇
µ
A,θ(t), t) dt +

∫ +∞

θ

Lµ,A(qµ
A,θ(t), q̇

µ
A,θ(t), t) dt,

(2.4)

and the “homoclinic function” Gµ : Tn → R as

Gµ(A) = Fµ(A, 0). (2.5)

There holds

Fµ(A, θ) = Gµ(A + ωεθ),∀θ ∈ R. (2.6)

Remark 2.1. The homoclinic function Gµ is the difference between the generating
functions S±

µ,I0
(A, q) of the stable and the unstable manifolds W s,u

µ (TI0) (which in
this case are exact Lagrangian manifolds) at the fixed section {q = π}, namely
Gµ(A) = S−

µ,I0
(A, π)−S+

µ,I0
(A, π). A critical point of Gµ gives rise to a homoclinic

orbit to torus TI0 , see lemma 2.3 of [6].

In order to justify the dominance of the Poincaré-Melnikov function when µ =
O(εp) one would need to extend analytically the function Fµ(A, θ) for complex
values of the variables. Since the condition qµ

A,θ(Re θ) = π, appearing naturally
when trying to extend the definition of qµ

A,θ to θ ∈ C, breaks analyticity, the
function Fµ(A, θ) can not be easily analytically extended in a sufficiently wide
complex strip. To overcome this problem, in [6] the Lagrangian action functional
is evaluated on different “1-bump pseudo-homoclinic solutions” Qµ

A,θ. Define ψ0 :
R → R by ψ0(t) = cosh2(t)/(1+cosh t)3 and set ψθ(t) = ψ0(t−θ). Two important
properties of the function ψ0(t) are that

∫
R

ψ0(t)q̇0(t) dt �= 0 and that it can be
extended to a holomorphic function on R+ i(−π, π) (while the homoclinic solution
q0(t) can be extended to a holomorphic function only up to R+ i(−π/2, π/2)). By
the Contraction Mapping Theorem there exist (lemma 4.1 of [6]) near qθ, for µ
small enough, pseudo-homoclinic solutions Qµ

A,θ(t) and a constant αµ
A,θ defined by

−Q̈µ
A,θ + sinQµ

A,θ(1 + µ f(ωεt + A)) = αµ
A,θψθ(t)

and ∫
R

(
Qµ

A,θ(t) − qθ(t)
)
ψθ(t) dt = 0.

We define the function F̃µ : Tn × R → R as the action functional of Lagrangian
(2.3) evaluated on the “1-bump pseudo-homoclinic solutions” Qµ

A,θ(t), namely

F̃µ(A, θ) =
∫
R

Lµ,A(Qµ
A,θ(t), Q̇

µ
A,θ(t), t) dt (2.7)

and G̃µ : Tn → R as G̃µ(A) = F̃µ(A, 0).

Remark 2.2. Also critical points of G̃µ give rise to homoclinic solutions to torus
TI0 , see lemma 4.2 of [6]. By theorem 2.1 below, from a geometrical point of view
the introduction of the “homoclinic function” G̃µ may be interpreted simply as mea-
suring the splitting with a non constant Poincaré section, see the introduction of
[6].
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The crucial point is now to observe that the homoclinic functions Gµ and G̃µ are
the same up to a change of variables close to the identity, as stated by the following
theorem (see theorem 4.1 of [6])

Theorem 2.1. For µ small enough (independently of ωε) there exists a Lipschitz
homeomorphism (a real analytic diffeomorphism if f is analytic) ψµ : Tn → Tn

of the form ψµ(A) = A + kµ(A)ωε with kµ : Tn → R satisfying kµ(A) = O(µ),
|kµ(A) − kµ(A′)| = O(µ)|A − A′|, such that G̃µ = Gµ ◦ ψµ.

Let Γ(ε,A) denote the Poincaré-Melnikov primitive

Γ(ε,A) =
∫
R

(1 − cos q0(t))f(ωεt + A) dt. (2.8)

Develop in Fourier series w.r.t. the first variable the homoclinic function

G̃µ(A) =
∑
k1∈Z

g̃k1(A2)eik1A1

and the Poincaré-Melnikov primitive

Γ(ε,A) =
∑
k1∈Z

Γk1(ε,A2)eik1A1 .

Assume that the perturbation f is analytic w.r.t (ϕ2, . . . , ϕn). More precisely
assume that there exist ri > 0 for i = 2, . . . , n, such that f has a C∞ extension in
D := R×(R+i[−r2, r2])× . . .×(R+i[−rn, rn]), holomorphic w.r.t. (ϕ2, . . . , ϕn) ∈
(R + i(−r2, r2)) × . . . × (R + i(−rn, rn)). Denote the supremum of |f | over D as
||f || := supϕ∈D |f(ϕ)|. The following theorem about the splitting of stable and
unstable manifolds in systems with three time scales, holds (see theorem 5.1 of [6])

Theorem 2.2. For µ||f ||ε−3/2 small there holds

G̃µ(A1, A2) = g̃0(A2) + 2Re
[
g̃1(A2)eiA1

]
+ R̃(A1, A2)

= Const +
(
µΓ0(ε,A2) + R0(ε, µ,A2)

)
+2 Re

[
µΓ1(ε,A2) + R1(ε, µ,A2)

]
eiA1 + R̃(A1, A2),

where R0(ε, µ,A2) = O
(
µ2||f ||2

)
, R1(ε, µ,A2) = O

(µ2||f ||2
ε2

exp
(
− π

2
√

ε

))
,

and
R̃(A1, A2) = O

(
µε−1/2||f || exp

(
− π√

ε

))
.

In order to prove our shadowing theorem we need also to recall the definition
of the k-bump pseudo-homoclinic solutions qL

A,θ(t) for the quasi-periodically
forced pendulum (2.2). Such pseudo solutions turn k times along the separatrices
and are asymptotic to the equilibrium 0, mod 2π, for t → ±∞. More precisely
in lemma 2.4 of [6] it is proved that for all k ∈ N, for all θ1 < . . . < θk with
mini(θi+1−θi) > L, with L sufficiently large, independent of ωε and µ, there exists
a unique pseudo-homoclinic solution qL

A,θ(t) : R → R which is a true solution of
(2.2) in each interval (−∞, θ1), (θi, θi+1) (i = 1, . . . , k−1), (θk,+∞) and qL

A,θ(θi) =
π(2i − 1), qL

A,θ(t) = qµ
A,θ1

(t) in (−∞, θ1) and qL
A,θ(t) = 2π(k − 1) + qµ

A,θk
(t) in

(θk,+∞). Such pseudo-homoclinic orbits are found via the Contraction Mapping
Theorem, as small perturbations of a chain of “1-bump homoclinic solutions” qµ

A,θi
.



FAST ARNOLD DIFFUSION 801

Then we consider the Lagrangian action functional evaluated on these pseudo-
homoclinic orbits qL

A,θ depending on n + k variables

F k
µ (A1, . . . , An, θ1, . . . , θk) =

∫ +∞

−∞
Lµ,A(qL

A,θ(t), q̇
L
A,θ(t), t) dt.

Setting ek = (1, . . . , 1) ∈ Rk, the following invariance property, inherited from the
autonomy of Hµ, holds

F k
µ (A, θ + ηek) = F k

µ (A + ηωε, θ), ∀θ ∈ Rk, η ∈ R. (2.9)

Let Fk
µ : Tn × Rk → R be the “k-bump heteroclinic function” defined by

Fk
µ(A, θ) := F k

µ (A, θ) − (I ′0 − I0) · A. (2.10)

Lemma 2.1. ∀I0, I
′
0 ∈ Rn, if (A, θ) is a critical point of the “k-bump hete-

roclinic function” Fk
µ(A, θ), then (Iµ(t), ωεt + A, qL

A,θ(t), q̇
L
A,θ(t)) where Iµ(t) =

I0−µ
∫ t

−∞(cos qL
A,θ(s)−1)∂ϕf(ωεs+A) ds is a heteroclinic solution connecting TI0

to TI′
0
.

By lemma 2.1, in order to get heteroclinic solutions connecting TI0 to TI′
0
, we

need to find critical points of Fk
µ(A, θ). When mini(θi+1 − θi) → +∞ the “k-bump

homoclinic function” F k
µ (A, θ) turns out to be well approximated simply by the

sum of the functions Fµ(A, θi) according to the following lemma. We set θ0 = −∞
and θk+1 = +∞. Note that the estimate given in what follows is independent of ε.

Lemma 2.2. There exist positive constants C1, L1 > 0 and functions Ri(µ,A, θi−1,
θi, θi+1) such that ∀0 < µ < µ0, ∀L > L1, ∀θ1 < . . . < θk with mini(θi+1 − θi) > L

F k
µ (A, θ1, · · · , θk) =

k∑
i=1

Fµ(A, θi) +
k∑

i=1

Ri(µ,A, θi−1, θi, θi+1), (2.11)

with

|Ri(µ,A, θi−1, θi, θi+1)| ≤ C1 exp(−C1L). (2.12)

3. The splitting condition. We now give a general “splitting condition” on the
homoclinic function Gµ well suited to describe the non-uniform splitting of sta-
ble and unstable manifolds which takes place in systems with three time scales.
Roughly, the “splitting condition” 3.1 below states that Gµ possesses a maximum
and provides explicit estimates of the non-uniform splitting. It will be used, in
the next section, to prove the shadowing theorem 4.1. As a paradigmatic example,
we will verify, in lemma 3.2, that, when the perturbation f(ϕ) =

∑n
j=1 cos ϕj , the

“splitting condition” is satisfied, see also remark 3.1.

Condition 3.1. “Splitting Condition”. There exist A ∈ Rn and a basis
{Ω1, . . . ,Ωn} of Rn, n ≥ 3, such that ωε ∈ R+Ω1, 1/2 ≤ |Ωi| ≤ 2, det{Ω1, . . . ,Ωn}
≥ 1/2, {Ω3, . . . ,Ωn} is an orthonormal basis of {Ω1,Ω2}⊥, and which enjoy the fol-
lowing properties : let us define Hµ(a1, . . . , an) as the homoclinic function Gµ(A)
in the new basis, namely

Hµ(a1, . . . , an) = Gµ(A + a1Ω1 + . . . + anΩn). (3.1)

Then there exist positive constants ρ, σ, δ1, δ2, δ3 > 0, with 3σ < ρ, δ2 < δ3, and
two continuous functions l1, l2 : [−ρ, ρ] × B

n−2

ρ → R with l1(x) < l2(x) for all

x ∈ [−ρ, ρ] × B
n−2

ρ , such that:
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• (i) for x = (a2, . . . , an) ∈ [−ρ, ρ] × B
n−2

ρ

J (x) := sup
a1∈[l1(x),l2(x)]

Hµ(a1, x) ≥ max
{

Hµ(l1(x), x),Hµ(l2(x), x)
}

+ δ1;

• (ii) for all y = (a3, . . . , an) ∈ B
n−2

ρ ,

∀a2 ∈ [−σ, σ], J (a2, y) ≥ J (0, y) − δ2

2
,

∀a2 ∈ [−ρ,−ρ + 2σ] ∪ [ρ − 2σ, ρ], J (a2, y) ≤ J (0, y) − δ2;

• (iii)

∀a2 ∈ [−σ, σ], ∀y ∈ B
n−2

σ , J (a2, y) ≥ J (0, 0) − δ3

2
,

∀a2 ∈ [−ρ, ρ], ∀y ∈ B
n−2

ρ \Bn−2
ρ−2σ, J (a2, y) ≤ J (0, 0) − δ3.

The next lemma states that the former “splitting condition” is satisfied by the
homoclinic function Gµ if (and only if) it holds for the homoclinic function G̃µ.

Lemma 3.1. Assume that G̃µ satisfies the splitting condition 3.1 with maps l̃1, l̃2
and parameters ρ, σ, δ1, δ2, δ3. Then Gµ satisfies the splitting condition 3.1 as
well, for some maps l1,2 = l̃1,2 + O(µ/

√
ε) and with the same parameters.

Proof. By theorem 2.1, G̃µ = Gµ ◦ ψµ, where ψµ(A) = A + kµ(A)ωε and ψµ

is a homeomorphism. Set H̃µ(a1, . . . , an) = G̃µ(A + a1Ω1 + . . . + anΩn) and
Hµ(a1, . . . , an) = Gµ(A + a1Ω1 + . . . + anΩn). We have

H̃µ(a1, a2, . . . , an) = Hµ

(
a1 + kµ(a1, . . . , an)

|ωε|
|Ω1|

, a2, . . . , an

)
,

where kµ(a1, . . . , an) := kµ(A + a1Ω1 + . . . + anΩn).
Assume that G̃µ satisfies condition 3.1 with maps l̃1, l̃2. For all x = (a2, . . . , an) ∈

[−ρ, ρ] × B
n−2

ρ , the map a1 �→ a1 + kµ(a1, x)|ωε|/|Ω1| is a homeomorphism from
the interval (l̃1(x), l̃2(x)) to the interval (l1(x), l2(x)), where

lj(x) := l̃j(x) + kµ(l̃j(x), x)|ωε|/|Ω1| (j = 1, 2).

There results that, for all x = (a2, . . . , an) ∈ [−ρ, ρ] × B
n−2

ρ

J̃ (x) := sup
a1∈[l̃1(x),l̃2(x)]

H̃µ(a1, x) = sup
a1∈[l1(x),l2(x)]

Hµ(a1, x) = J (x).

Therefore Gµ satisfies the splitting condition 3.1, with maps l̃j replaced by lj , and
the same positive parameters. Since kµ = O(µ) and |ωε| = O(1/

√
ε) we have

|lj(x) − l̃j(x)| = O(µ/
√

ε).

We now give a paradigmatic example where the former “splitting condition” is
satisfied. Assume that the perturbation f is given by f(ϕ1, . . . , ϕn) =

∑n
j=1 cos ϕj .

In the next lemma we show that the corresponding homoclinic function G̃µ satisfies
the “splitting condition” 3.1 and hence, by lemma 3.1, Gµ as well satisfies the
“splitting condition” 3.1.



FAST ARNOLD DIFFUSION 803

Lemma 3.2. Assume that f(ϕ) =
∑n

j=1 cos ϕj. There exist a basis {Ω1, . . . ,Ωn}
and a positive constant δ0 such that, if ε is small, 0 < µε−3/2 < δ0 and 0 <

µε−2a−1 < δ0, then G̃µ satisfies the “splitting condition” 3.1, with A = 0, ρ =
πεa+1/2, σ = ρ/6, δ1 = δ3 = µρ2/2, δ2 = 3πµε−1/2 exp(−π/(2

√
ε)), l̃1(x) =

−2π, l̃2(x) = 2π.

Proof. In order to simplify the notations we give the proof for n = 3 and we
assume that |β| = 1. We will prove that G̃µ satisfies the “splitting condition” 3.1
with A = 0 and w.r.t the basis

Ω1 = (1, εa+1/2β), Ω2 = (0, β), Ω3 = (0, β′),

where |β′| = 1 and β ·β′ = 0. We set ρ = πεa+1/2 and we assume that 0 < µ ≤ δρ2,
0 < µ ≤ δε3/2, where δ is a small constant (independent of ε) to be specified later.
Let δ > 0 be such that theorem 2.2 holds for 0 < µ ≤ δε3/2. We shall always choose
0 < δ ≤ δ.

From now on, notation Ki will be used for positive universal constants, whereas
notation ci(δ) will be used for positive constants depending only on δ. Notation
u = O(v) will mean that there exists a universal constant K such that |u| ≤ K|v|.

Our first aim is to prove expression (3.14) below. It easily results that, if f(ϕ) =∑3
j=1 cos ϕj ,

Γ0(ε,A2) =
3∑

j=2

2πβjε
a

sinh(βjεa π
2 )

cos Aj and Γ1(ε,A2) =
π√

εsinh( π
2
√

ε
)
. (3.2)

By thereom 2.2 we have

G̃µ(A1, A2, A3) = g̃0(A2, A3) + 2Re
[
g̃1(A2, A3)eiA1

]
+ O

(
µε−1/2e−π/

√
ε
)

(3.3)

and, by (3.2), up to a constant which we shall omit,

g̃0(A2, A3) =
µ2πβ2ε

a

sinh(β2εa π
2 )

cos A2 +
µ2πβ3ε

a

sinh(β3εa π
2 )

cos A3 + O(µ2), (3.4)

g̃1(A2, A3) =
µπ√

ε sinh( π
2
√

ε
)

+ O
(µ2

ε2
e−π/2

√
ε
)
. (3.5)

In this proof we shall use the abbreviations

Cε =
2πβ2ε

a

sinh(β2εa π
2 )

+
2πβ3ε

a

sinh(β3εa π
2 )

, Dε =
2π√

ε sinh( π
2
√

ε
)
.

Note that, as ε → 0, we have
2πβjε

a

sinh(βjεa π
2 )

= 4 + O(εa), Dε =
4π√

ε
e−π/(2

√
ε)

(
1 + O(e−π/

√
ε)

)
. (3.6)

We shall consider ε small so that
3π√

ε
e−π/2

√
ε ≤ Dε ≤ 5π√

ε
e−π/2

√
ε (3.7)

By (3.3) and (3.5), since 0 < µ ≤ δε3/2,

G̃µ(A1, A2, A3) = g̃0(A2, A3) + µDε cos A1 + O
(
µε−1/2e−π/

√
ε + µδε−1/2e−π/2

√
ε
)
.

(3.8)
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Since (A1, A2, A3) = a1Ω1 + a2Ω2 + a3Ω3 = (a1, (a1ε
a+1/2 + a2)β + a3β

′), the
homoclinic function writes in the new variables

H̃µ(a1, a2, a3) = G̃µ

(
a1Ω1 + a2Ω2 + a3Ω3

)
= G̃µ

(
a1, (a1ε

a+1/2 + a2)β + a3β
′
)
.

(3.9)

Define h̃0(b2, a3) = g̃0(b2β + a3β
′). By (3.9) and (3.8), there exists c0(δ) > 0 such

that, for all 0 < ε ≤ c0(δ),

H̃µ(a1, a2, a3) = h̃0

(
a1ε

a+1/2 + a2, a3

)
+ µDε cos a1 + O

(
µδε−1/2e−π/2

√
ε
)
.

(3.10)

We derive from this latter expression and (3.7) that

H̃µ(a1, a2, a3) = h̃0

(
a1ε

a+1/2 + a2, a3

)
+ O

(
µε−1/2e−π/2

√
ε
)
. (3.11)

By (3.4) and (3.6)

g̃0(A2, A3) = µCε − 2µ(A2
2 + A2

3) + O
(
µεa(A2

2 + A2
3)

)
+ O

(
µ(A4

2 + A4
3)

)
+ O(µ2).

(3.12)

We shall assume in the sequel of the proof that a2, a3 ∈ [−ρ, ρ], a1 ∈ [−2π, 2π], so
that, since ρ = πεa+1/2, there results a1ε

a+1/2 ∈ [−2ρ, 2ρ], b2 = a1ε
a+1/2 + a2 ∈

[−3ρ, 3ρ] and b4
2 + a4

3 = O(ρ4). Moreover we have that µ2 ≤ µδρ2 and there exists
c1(δ) ∈ (0, c0(δ)) such that, if 0 < ε ≤ c1(δ), then εa ≤ δ and ρ4 ≤ δρ2. Note also
that, since β, β′ are orthonormal vectors, we have A2

2 + A2
3 = b2

2 + a2
3. Finally we

derive from (3.12) that, for 0 < ε ≤ c1(δ),

h̃0(b2, a3) = µCε − 2µ(b2
2 + a2

3) + O(µδρ2). (3.13)

Since ρ = πεa+1/2 we have ε−1/2e−π/2
√

ε = o(ρ2) as ε → 0; therefore, by (3.11) and
(3.13), there exist K0 > 0, c2(δ) ∈ (0, c1(δ)) such that, for all 0 < ε ≤ c2(δ),

H̃µ(a1, a2, a3) = µCε − 2µ(b2
2 + a2

3) + r0(a1, a2, a3), |r0(a1, a2, a3)| ≤ K0µδρ2,
(3.14)

where b2 = a1ε
a+1/2 + a2.

We now prove that point (i) of the “splitting condition” 3.1 is satisfied by G̃µ

with δ1 = µρ2/2, l̃1(x) = −2π and l̃2(x) = 2π, where x := (a2, a3). Let us con-
sider J (a2, a3) := supa1∈[−2π,2π] H̃µ(a1, a2, a3). Since a2 ∈ [−ρ, ρ], −a2ε

−(a+1/2) ∈
[−π, π] and we can derive from (3.14) that

J (a2, a3) ≥ H̃µ

(
− a2ε

−(a+1/2), a2, a3

)
≥ µCε − 2µa2

3 − K0µδρ2. (3.15)

If a1 = ±2π then b2 = a1ε
a+1/2 + a2 = a2 ± 2ρ and then, since a2 ∈ [−ρ, ρ], we get

|b2| ≥ ρ. As a consequence, by (3.14) and (3.15),

H̃µ

(
± 2π, a2, a3

)
≤ µCε − 2µ(ρ2 + a2

3) + K0µδρ2 ≤ J (a2, a3) − 2µρ2 + 2K0µδρ2.

(3.16)

Choosing δ < 1/2K0, we get in (3.16) that H̃µ(±2π, a2, a3) ≤ J (a2, a3) − µρ2/2.
There results that condition 3.1-(i) is satisfied with δ1 = µρ2/2, l1(x) = −2π and
l2(x) = 2π, where x = (a2, a3).
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We now turn to the proof of (ii) and (iii). If a2, a3 ∈ [−ρ, ρ], a1 ∈ [−2π, 2π] and
|b2| = |a1ε

a+1/2 + a2| ≥
√

2K0δρ, then, by (3.14) and (3.15),

H̃µ(a1, a2, a3) ≤ µCε−2µ(a2
3+2K0δρ

2)+K0µδρ2 ≤ µCε−2µa2
3−3K0µδρ2 < J (a2, a3).

Hence

J (a2, a3) = sup
{

H̃µ(a1, a2, a3) ; a1ε
a+1/2 ∈

[
− a2 −

√
2K0δρ,−a2 +

√
2K0δρ

]}
.

(3.17)

We use here that, since 2K0δ < 1, [−a2 −
√

2K0δρ,−a2 +
√

2K0δρ] ⊂ [−2ρ, 2ρ] =
[−2πεa+1/2, 2πεa+1/2]. Writing a1 = (b2 − a2)ε−(a+1/2), we derive from (3.17) and
(3.10) that

J (a2, a3) = sup
b2∈[−√

2K0δρ,
√

2K0δρ]

H̃µ

(
(b2 − a2)ε−a−1/2, a2, a3

)

= sup
b2∈[−√

2K0δρ,
√

2K0δρ]

(
h̃0(b2, a3) + µDε cos

(b2 − a2

εa+1/2

))

+O
(
δµε−1/2e−π/2

√
ε
)
. (3.18)

Now, if b2 ∈ [−
√

2K0δρ,
√

2K0δρ] then b2ε
−a−1/2 ∈ [−π

√
2K0δ, π

√
2K0δ], so we

can write that

cos
(b2 − a2

εa+1/2

)
= cos

( −a2

εa+1/2

)
+ O(

√
δ). (3.19)

As a consequence, by (3.18) and (3.7) there holds

J (a2, a3) = sup
b2∈[−√

2K0δρ,
√

2K0δρ]

(
h̃0(b2, a3) + µDε cos

( −a2

εa+1/2

))

+O
(√

δµε−1/2e−π/2
√

ε
)

= m̃(a3) + µDε cos
( a2

εa+1/2

)
+ O

(√
δµε−1/2e−π/2

√
ε
)
, (3.20)

where we have set

m̃(a3) := sup
b2∈[−√

2K0δρ,
√

2K0δρ]

h̃0(b2, a3). (3.21)

Finally, there exists K1 > 0 such that, by (3.20),

J (a2, a3) = J (0, a3) + µDε

(
cos

( a2

εa+1/2

)
− 1

)
+ r1(a2, a3),

|r1(a2, a3)| ≤ K1

√
δµε−1/2e−π/2

√
ε. (3.22)

We are now in position to prove condition 3.1-(ii). Assume 0 < δ ≤ π2/4K2
1 and

choose σ = ρ/6 = εa+1/2π/6 and δ2 = 3πµε−1/2e−π/2
√

ε. If a2 ∈ [−σ, σ] then
cos(a2/εa+1/2) − 1 ≥ −1 +

√
3/2 ≥ −1/6. This readily implies, by (3.22) and

(3.7), that J (a2, a3) ≥ J (0, a3) − δ2/2. If a2 ∈ [−ρ,−ρ + 2σ] ∪ [ρ − 2σ, ρ] then
a2/εa+1/2 ∈ [−π,−2π/3]∪ [2π/3, π], so that cos(a2/εa+1/2)− 1 ≤ −3/2. It follows,
still by (3.22) and (3.7), that J (a2, a3) ≤ J (0, a3) − δ2. This proves condition
3.1-(ii).

In order to prove condition 3.1-(iii), we notice that, by (3.13) and the definition
of m̃ given in (3.21),

m̃(a3) = µCε − 2µa2
3 + O(δµρ2). (3.23)
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Hence there exist K2 > 0 and c3(δ) ∈ (0, c2(δ)) such that, for all 0 < ε ≤ c3(δ), by
(3.23), (3.20) and (3.7)

J (a2, a3) = J (0, 0) − 2µa2
3 + r2(a2, a3), with |r2(a2, a3)| ≤ K2δµρ2. (3.24)

Let us assume δ ≤ 1/6K2 and let δ3 = µρ2/2. By (3.24) and (3.7), if a3 ∈ B
n−2

σ ,
then J (a2, a3) ≥ J (0, 0)−δ3/2; if a3 ∈ B

n−2

ρ \Bn−2
ρ−2σ then J (a2, a3) ≤ J (0, 0)−δ3.

As a conclusion, lemma 3.2 holds with δ0 = min{δ, 1/2K0, π
2/4K2

1 , 1/6K2}.

Remark 3.1. The former splitting condition holds also also for more general per-
turbations f(ϕ1, . . . , ϕn) for which f0(ϕ2, . . . , ϕn) possesses a nondegenerate max-
imum at (ϕ2, . . . , ϕn) and f1(ϕ2, . . . , ϕn) �= 0 where

fk1(ϕ2, . . . , ϕn) = (1/2π)
∫ 2π

0

f(σ, ϕ2, . . . , ϕn)e−ik1σ dσ.

This kind of condition is considered in theorem 5.2 of [6].

4. The shadowing theorem. In this section we shall prove, under the “splitting
condition” 3.1, our general shadowing theorem.

Theorem 4.1. Let n ≥ 3 and assume that the homoclinic function Gµ satis-
fies the splitting condition 3.1. Let ωε be a (γε, τ)-diophantine vector, i.e. |ωε ·
k| ≥ γε/|k|τ ∀k ∈ Zn\{0}. Then, for all I0, I

′
0 ∈ Rn such that (I ′0 − I0) ∈

Span{Ω3, . . . ,Ωn}, there exists a heteroclinic trajectory from TI0 to TI′
0

which con-
nects a η-neighbourhood of torus TI0 to a η-neighbourhood of torus TI′

0
in the “dif-

fusion time”

Td ≤ C
[ρ|I ′0 − I0|

δ3
max

{ 1
γεστ

, | ln δ1|, | ln δ2|,
∆
|ωε|

}
+ | ln η|

]
, (4.1)

where ∆ :=
{

max
x∈[−ρ,ρ]×B

n−2
ρ

l2(x) − min
x∈[−ρ,ρ]×B

n−2
ρ

l1(x)
}
.

Remark 4.1. The diophantine condition on the frequency vector ωε restricts the
values of ε and β that we consider. In any case, if for instance β is (γ,n − 2)-
diophantine then for τ ≥ n − 1 there exist c0 > 0 and a sequence εj → 0 such that
ωε is (γε, τ)-diophantine with γε = c0ε

a, see for example [16].

Remark 4.2. The meaning of (4.1) is the following: the diffusion time Td is
estimated by the product of the number of heteroclinic transitions k = ( heteroclinic
jump / splitting ) = O(ρ|I ′0 − I0|/δ3), and of the time Ts required for a single
transition, that is Td ≈ k ·Ts. The time for a single transition Ts is bounded by the
maximum time between the “ergodization time” (1/γεσ

τ ), i.e. the time needed for
the flow ωt to make an σ-net of the torus, and the time max{| ln δ1|, | ln δ2|,∆/|ωε|}
needed to “shadow” homoclinic orbits for the forced pendulum equation. We use
here that these homoclinic orbits are exponentially asymptotic to the equilibrium.

We could prove also the existence of connecting orbits for all I ′0 − I0 ∈ Span
{Ω2, . . . ,Ωn}. In this case the number k of heteroclinic transitions would depend
also on δ2, see remark 4.3.

Proof. Still for simplicity of notation we write the proof for n = 3. Then I ′0−I0 =
±|I ′0 − I0|Ω3; we assume for definitiveness that I ′0 − I0 = |I ′0 − I0|Ω3, so that
(I ′0 − I0) · (

∑3
j=1 ajΩj) = |I ′0 − I0|a3.
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We choose the number of heteroclinic transitions as

k =
[8|I ′0 − I0|ρ

δ3

]
+ 1. (4.2)

By lemma 2.1 and the exponential decay of the solutions of (2.2) asymptotic to the
equilibrium , in order to prove the theorem, it is sufficient to find a critical point
of the k-bump heteroclinic function Fk

µ : T3 × Rk → R such that

θk − θ1 = O
(ρ|I ′0 − I0|

δ3
max

{ 1
γεστ

, | ln δ1|, | ln δ2|,
∆
|ωε|

})
. (4.3)

We introduce suitable coordinates (a1, a2, a3, s1, . . . , sk) ∈ R3 × (min l1,max l2)k

defined by

A = A +
3∑

j=1

ajΩj and ∀i = 1, . . . , k, θi =
(ηi + si − a1)|Ω1|

|ωε|
, (4.4)

where ηi are constants to be chosen later. Let Hk
µ(a, s) = F k

µ (A, θ) be the “k-
bump homoclinic function” and Hk

µ(a, s) = Fk
µ(A, θ) be the “k-bump heteroclinic

function” expressed in the new variables (a, s).
The function Hk

µ does not depend on a1, since, by the invariance property (2.9)
(we recall that Ω1 = |Ω1|ωε/|ωε|),

Hk
µ(a, s) = F k

µ

(
A +

3∑
j=1

ajΩj ,
(η1 + s1 − a1)|Ω1|

|ωε|
, . . . ,

(ηk + sk − a1)|Ω1|
|ωε|

)

−(I ′0 − I0) ·
( 3∑

j=1

ajΩj

)

= F k
µ

(
A +

3∑
j=2

ajΩj ,
(η1 + s1)|Ω1|

|ωε|
, . . . ,

(ηk + sk)|Ω1|
|ωε|

)

−|I ′0 − I0|a3, (4.5)

up to an additive constant. In the sequel of the proof we shall use the abbreviation
Hk

µ = Hk
µ(0, a2, a3, s).

We now choose the constants (η1, . . . , ηk) ∈ Rk. Note that, since ωε is (γε, τ)-
diophantine, Ω1 satisfies the diophantine condition

|Ω1 · k| ≥
γε|Ω1|
|ωε||k|τ

, ∀k ∈ Zn\{0}.

Hence, by the results of [4], there exists C > 0 such that the “ergodization time”
Te of the torus T3 run by the linear flow Ω1t, i.e the smallest time for which
{Ω1t ; 0 ≤ t ≤ Te} is a σ− net of the torus, can be bounded from above by
C|ωε|/(γεσ

τ ). Hence for each interval J of length greater or equal to C|ωε|/(γεσ
τ )

there exists η ∈ J such that

d(ηΩ1, 2πZ3) < σ. (4.6)

In particular there exists a constant C2 and there exist ηi such that

|ωε|
C1|Ω1|

ln
( 8C1

min{δ1, δ2}
)

+ ∆ ≤ ηi+1 − ηi ≤
|ωε|

C1|Ω1|
ln

( 8C1

min{δ1, δ2}
)

+
C2|ωε|
γεστ

+ ∆,

(4.7)
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ηiΩ1 ≡ χi, mod2πZ3, χi = yiΩ2 + ziΩ3 with |yi| < σ, |zi| < σ. (4.8)

In order to prove the theorem we just need to prove the existence of a critical
point of Hk

µ in R2 × (min l1,max l2)k. The upperbound of the diffusion time given
in (4.1) will then be a consequence of (4.7) and (4.2). Indeed, by (4.4) and (4.7)
we get that

θi+1 − θi =
(ηi+1 − ηi)|Ω1|

|ωε|
+

(si+1 − si)|Ω1|
|ωε|

≤ 1
C1

ln
( 8C1

min{δ1, δ2}
)

+
C2|Ω1|
γεστ

+
2∆|Ω1|
|ωε|

. (4.9)

By (4.9) there exists C > 0 such that the time θi+1−θi “spent for a single transition”
is bounded by

Ts := max
i

(θi+1 − θi) ≤ Cmax
{ 1

γεστ
, | ln δ1|, | ln δ2|,

∆
|ωε|

}
. (4.10)

From (4.10) and (4.2) we derive immediately (4.3) and then (4.1).
We now provide, using lemma 2.2, a suitable expression of the k-bump hetero-

clinic function Hk
µ. By lemma 2.2, the invariance property (2.6), (4.8) and since

Gµ : T3 → R, we get

Hk
µ(a2, a3, s) =

k∑
i=1

[
Fµ

(
A +

3∑
j=2

ajΩj ,
(ηi + si)|Ω1|

|ωε|
)

+ Si(a2, a3, si−1, si, si+1)

−|I ′0 − I0|
k

a3

]

=
k∑

i=1

[
Gµ

(
A +

3∑
j=2

ajΩj + ηiΩ1 + siΩ1

)
+ Si(a2, a3, si−1, si, si+1)

−|I ′0 − I0|
k

a3

]

=
k∑

i=1

[
Hµ

(
si, a2 + yi, a3 + zi

)
− |I ′0 − I0|

k
a3 + Si

]
, (4.11)

where Si := Si(a2, a3, si−1, si, si+1) = Ri(A, θi−1, θi, θi+1) after the change of vari-
ables (4.4). We recall that Hµ is defined in condition 3.1 The left hand side in-
equality in (4.7) implies that

θi+1 − θi ≥
(ηi+1 − ηi − ∆)|Ω1|

|ωε|
≥ 1

C1
ln

( 8C1

min{δ1, δ2}
)
;

hence, by (2.12),

|Si| ≤
min{δ1, δ2}

8
. (4.12)

We will maximize Hk
µ in the open set

U =
{

(a2, a3, s) ∈ Rk+2
∣∣∣ ∀i a2 + yi ∈ (−ρ, ρ), a3 + zi ∈ (−ρ, ρ),

si ∈
(
l1(a2 + yi, a3 + zi), l2(a2 + yi, a3 + zi)

)}
.
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U �= ∅ since {0} × {0} × Πk
i=1(l1(yi, zi), l2(yi, zi)) ⊂ U . Since U is bounded, Hk

µ

attains its maximum over U at some point (a, s) = (a2, a3, s). It is enough to prove
that (a, s) ∈ U .

• We first prove that for all i, si ∈ (l1(a2 + yi, a3 + zi), l2(a2 + yi, a3 + zi)).
Since (a, s) is a maximum point of Hk

µ in U , for any t ∈ [l1(a2 + yi, a3 +
zi), l2(a2 + yi, a3 + zi)], replacing si with t does not increase Hk

µ. Since such a
substitution alters at most three terms among S1, . . . , Sk in (4.11), we obtain,
using (4.12), that for any i, for any t ∈ [l1(a2 +yi, a3 +zi), l2(a2 +yi, a3 +zi)],

Hµ(si, a2 + yi, a3 + zi) ≥ Hµ(t, a2 + yi, a3 + zi) −
3
4

min{δ1, δ2}.

Hence

Hµ(si, a2 + yi, a3 + zi) ≥ J (a2 + yi, a3 + zi) −
3δ1

4
,

and, by condition 3.1-(i), this implies that si ∈ (l1(a + χi), l2(a + χi)), where
we have set χi = (yi, zi).

• We now prove that for all i, a2 + yi ∈ (−ρ, ρ). Indeed we have by (4.11) and
(4.12)

Hk
µ(a2, a3, s) ≤

k∑
i=1

[
Hµ(si, a2 + yi, a3 + zi) +

min{δ1, δ2}
8

− |I ′0 − I0|
k

a3

]

≤
k∑

i=1

[
J (a2 + yi, a3 + zi) +

δ2

8
− |I ′0 − I0|

k
a3

]
. (4.13)

On the other hand, still by (4.11) and (4.12), choosing s = s̃ = (s̃1, . . . , s̃k)
with s̃i ∈ (l1(yi, a3 +zi), l2(yi, a3 +zi)) so that Hµ(s̃i, yi, a3 +zi) = J (yi, a3 +
zi), we get

Hk
µ(0, a3, s̃) =

k∑
i=1

[
Hµ

(
s̃i, yi, a3 + zi

)
− |I ′0 − I0|

k
a3 + Si

]

≥
k∑

i=1

[
J (yi, a3 + zi) −

δ2

8
− |I ′0 − I0|

k
a3

]

≥
k∑

i=1

[
J (0, a3 + zi) −

5δ2

8
− |I ′0 − I0|

k
a3

]
, (4.14)

because |yi| < σ and by condition 3.1-(ii). Since Hk
µ(a, s) ≥ Hk

µ(0, a3, s̃), we
can derive from (4.13) and (4.14) that there exists i0 ∈ {1, . . . , k} such that
J (a2 + yi0 , a3 + zi0) ≥ J (0, a3 + zi0) − 3δ2/4. Still by condition 3.1-(ii),
a2 + yi0 ∈ (−ρ + 2σ, ρ − 2σ). As a result, since (by (4.8)) |yi − yi0 | ≤ 2σ for
all i, we get that a2 + yi ∈ (−ρ, ρ).

• At last we prove that, for all i, a3 + zi ∈ (−ρ, ρ). By (4.11) and (4.12), choos-
ing s = s̃ = (s̃1, . . . , s̃k), s̃i ∈ (l1(yi, zi), l2(yi, zi)), so that Hµ(s̃i, yi, zi) =
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J (yi, zi),

Hk
µ(0, 0, s̃) =

k∑
i=1

[
Hµ

(
s̃i, yi, zi

)
+ Si

]
≥

k∑
i=1

[
J (yi, zi) −

min{δ1, δ2}
8

]

≥
k∑

i=1

[
J (0, 0) − 5δ3

8

]
, (4.15)

since δ2 < δ3, |yi|, |zi| < σ and by condition 3.1-(iii). Hence, since Hk
µ(a, s) ≥

Hk
µ(0, 0, s̃), by (4.13) there exists i0 ∈ {1, . . . , k} such that

J (a2 + yi0 , a3 + zi0) +
δ3

8
− |I ′0 − I0|

k
a3 ≥ J (0, 0) − 5δ3

8
. (4.16)

Since |a3| ≤ ρ and by (4.2) we get |I ′0 − I0||a3|/k ≤ δ3/8. Hence by (4.16),
J (a2 + yi0 , a3 + zi0) ≥ J (0, 0) − 7δ3/8. By condition 3.1-(iii), a3 + zi0 ∈
(−ρ + 2σ, ρ − 2σ) and as a consequence, since for all i |zi| < σ, we deduce
that a3 + zi ∈ (−ρ, ρ).

We have proved that the maximum point (a, s) ∈ U , which completes the proof of
the theorem.

As a consequence of the general shadowing theorem 4.1 and of lemma 3.2 we get
the following statement.

Theorem 4.2. Let f(ϕ) =
∑n

j=1 cos ϕj, n ≥ 3, and ωε be a (γε, τ)-diophantine
vector. Assume ε, µε−3/2 and µε−2a−1 to be sufficiently small. Then, for all I0, I

′
0

with ωε · I0 = ωε · I ′0 and (I0)1 = (I ′0)1 there exists a heteroclinic orbit connecting
the invariant tori TI0 and TI′

0
with a diffusion time

Td ≤ C
|I ′0 − I0|
µεa+(1/2)

× max
{ 1

γε(εa+(1/2))τ
, | ln(µ)|

}
(4.17)

Remark 4.3. The number k of heteroclinic transitions used in the proof of theo-
rem 4.2 is polynomial w.r.t 1/ε since our shadowing orbit moves along the direc-
tions (I2, . . . , In) ∈ Rn−1 only (“directions of large splitting”). On the contrary
the shadowing orbit connecting tori TI0 and TI′

0
with (I ′0)1 �= (I0)1 would shadow

an exponentially large number of heteroclinic transitions and the diffusion time
would depend also on the constant δ2 = 3πµε−1/2 exp(−π/(2

√
ε)) which describes

the exponentially small splitting. In any case, at each transition, the shadowing
orbit approaches the homoclinic point only up ρ = O(εa+1/2) and therefore the
time Ts spent for each single transition is polynomial w.r.t 1/ε. In this way we
deduce that the diffusion time Td is estimated, up to inverse powers of 1/ε, by
an exponential Td = O(exp(π/(2

√
ε))). Since the (determinant of the) splitting

D = O(exp(−π/(2
√

ε))) we get that Td ≈ 1/D, while in [10] and [6] the diffusion
time is estimated by Td ≈ 1/D

p
for some positive constant p.
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